

LA-UR-21-24203

Approved for public release; distribution is unlimited.

Title: Phloem transport under drought

Author(s): Sevanto, Sanna Annika

Intended for: Presentation to University of Minnesota Plant Physiology working group

Issued: 2021-04-30

Phloem transport under drought

Sanna Sevanto
Earth and Environmental Sciences Division
Los Alamos National Laboratory

Plant Physiology working group May 5th, 2021 University of Minnesota, Duluth

Acknowledgements:

Los Alamos NATIONAL LABORATORY EST. 1943

Los Alamos National Laboratory:

- -EES and vegetation team
- -Bioenergy and Biome Sciences
- -Physics Division
- -Material Sciences
- -IRS

UNM Pockman and Hanson groups

EMPA –Swiss Federal Laboratories of Materials Science

Dominique Derome, Jan Carmeliet, Thijs Defraeye, Alessandra Patera, David Mannes, David Habitur, Anne Bonnin @ Paul Scherrer Institute

Different ways of building up phloem

Non-permeable conduits walls

Semi-permeable conduits walls

Pros and cons

Non-permeable conduits walls

- -Phloem relatively isolated from the xylem
- -Less prone to turgor loss during drought
- -Flow driven by vertical pressure gradient

Semi-permeable conduits walls

- -Phloem well connected to it's surroundings
- -Less prone to viscosity build-up during drought
- -Flow driven by horizontal pressure gradient

Münch number

Fluid viscosity according to Morison 2002

$$\eta = \eta_0 e^{\frac{a\Psi}{1-b\Psi}}$$

Radial permeability from Sevanto et al. 2011

Munch number =
$$\frac{16\eta L^2 L_p^*}{r^3} = \frac{radial\ conductance}{axial\ conductance}$$

Jensen et al. 2009

Conduit size from x-ray tomography measurements

Scalable experiments

Viscosity and permeability varied

$$Munch number = \frac{16\eta L^2 L_p}{r^3}$$

Munch number range $10^{-11} - 10^{-8}$

Membrane Thermo Fisher "Snake Skin" dialysis tube Diameter 16mm, length 40cm

Do we have this resolved?

Do we have this resolved?

Do we have this resolved?

What does radial flow do?

The more permeable the conduits, the more frequent "loading zones" need to be to maintain constant flow rate.

What might radial in flow do?

Taylor dispersion: An effect in fluid mechanics where a shear flow can increase diffusivity of species.

Nakad M, Witelski T, Domec J-C, **Sevanto S**, Katul G. 2021. Taylor dispersion in osmotically driven laminar flows. *Journal of Fluid Mechanics* 913 http://dx.doi.org/10.1017/jfm.2021.56.

What does radial flow do to Taylor dispersion?

- -Instead of increasing the longitudinal transport like in nonpermeable tubes, outcome depends on Pe_r
- -We need to consider high and low Munch number and high and low Pe_r separately

 **L=2r for radial flow

$$Pe = \frac{advective\ transport}{diffusive\ transport} = \frac{Lu}{D} = Re\ Sc$$

Assumption: Re<<1 but advective transport doesn't need to be small because Sc>>1

Increased sugar flow rates

Low Munch number (low radial conductance)

Low Pe_r Diffusion dominates

High Pe_r Advection dominates

Increased sugar flow rates

High Munch number (high radial conductance)

Low Pe_r
Diffusion
dominates

High Pe_r Advection dominates

If we assume that v<<u (Hagen-Poiseulle averaging) at high Munch number

Low Pe_r
Diffusion
dominates

High Pe_r Advection dominates

Comparison between Hagen-Poiseulle averaging, Taylor dispersion and experiments

Experimental runs from Jensen et al. 2009; M increases with run number

Sugar front position

